
DIGITAL SIGNAL PROCESSING APPLICATIONS WITH ITERATIVE LOGARITHMIC MULTIPLIERS JITA 1(2011) 2:83-89

 DIGITAL SIGNAL PROCESSING APPLICATIONS WITH
ITERATIVE LOGARITHMIC MULTIPLIERS

1Aleksej Avramović, 2Patricio Bulić, 3Zdenka Babić
1(aleksej@etfbl.net), 2(patricio.bulic@fri.uni-lj.si), 3(zdenka@etfbl.net)

Contribution to the State of the Art

UDC 621.391:004

Abstract: Many digital signal processing applications demand a huge number of multiplications, which are time, power and
area consuming. But input data is often corrupted with noise, which means that a few least signifi cant bits do not carry usable
information and do not need to be processed. Therefore, approximate multiplication does not affect application effi ciency
when approximation error is less than noise introduced during data acquisition. This fact enables usage of faster and less
power-consuming algorithms that is important in many cases where processing includes convolution, integral transformations,
distance computations etc. This paper discusses logarithm-based approximate multipliers and squarers, their characteristics
and digital signal processing applications based on approximate multiplications. Our iterative multipliers and squarers contain
arbitrary series of basic blocks that involves only adders and shifters; therefore, it is not power and time consuming and
enables achieving arbitrary accuracy. It was shown that proposed approximate multipliers and squarers can be used in several
signal processing applications without decreasing of application effi ciency.

Keywords: Approximate multiplication, Digital signal processing

INTRODUCTION

Digital signal processing (DSP) applications often
involve algorithms, which demand a huge number of
multiplications, which can be time, power and area
consuming. Multipliers often process a large amount
of data corrupted with noise, which is unnecessary
consumption of power and time. For example, many
applications involve calculations of integral transfor-
mations, such as Fast Fourier Transform (FFT), Dis-
crete Cosine Transform (DFT) and Discrete Wavelet
Transform (DWT), after which quantization is ap-
plied, like in algorithms for compression [3], [20].
Similarly, frequency leakage, which is common dur-
ing spectrum analysis, may lead to the estimation of
harmonics with certain amount of error. In such ap-
plications, which involve error due to quantization or
other quantization, sometimes it is more effi cient to
calculate multiplication results without least signifi -
cant bits, instead of calculating full-precision results.
In other DSP applications convolution or correla-
tion between two signals has to be calculated. Cal-

culation of correlation may involve a large number
of multiplications, but it is important to notice that
only the maximum or its approximation, of correla-
tion is used; therefore approximated multiplication
will not decrease application effi ciency. The similar
is with noise fi ltering and other applications that in-
clude convolution. Other applications that involve a
signifi cant number of multiplications are found in
cryptography, object matching and recognition, vid-
eo and image processing, etc. In applications where
the speed of the calculation is more important than
accuracy, truncated or logarithm multiplications
seem to be suitable methods [6], [12], [18].

INTEGER, TRUNCATED AND LOGARITHMIC MULTIPLIERS

Integer multiplier is one of the simplest meth-
ods for computation of the product, but it requires
n multiplication steps for two n-bits unsigned num-
bers [10]. Such an integer multiplication, where the
least-signifi cant bit of the multiplicator is examined,

December 2011 Journal of Information Technology and Applications 83

DOI: 10.7251/JIT1102083A

JITA 1(2011) 2:83-89 AVRAMOVIĆ A., BULIĆ P., BABIĆ Z.:

is known as the radix-2 multiplication. Shorter time
delay can be achieved by examining k lower bits of
the multiplicand in each step. Usually, the radix-4
multiplication is used, where two least-signifi cant
bits of the multiplicand are examined. This kind of
approach usually requires signifi cant hardware re-
sources. The well-known implementation of such
a multiplier is an array multiplier, where n-2 n-bits
carry-save adders and one n-bits carry-propagate ad-
der is used to implement the n-bits array multiplier.

Truncated multipliers are extensively used in digi-
tal signal processing where the speed of the multi-
plication and the area- and power-consumptions are
important [11], [18], [22]. However, as mentioned
before, there are many applications in DSP where
high accuracy is not important. By discarding some
of the less signifi cant bits, which can be corrupted
with noise, multiplier is less hardware and time con-
suming. If it is necessary, simple compensation cir-
cuits can be applied to reduce the approximation er-
ror [6], [14], [15].

Logarithmic multiplication is an approximate
multiplication technique that uses the fact that loga-
rithm of the product is a sum of operand logarithms
[6], [12], [14], [15]; therefore an operand conversion
from integer number system into the logarithm
number system (LNS) is used. In more detail, the
multiplication of the two operands N1 and N2 is per-
formed in three phases, calculating the operand loga-
rithms, the addition of the operand logarithms and
the calculation of the antilogarithm:

1 2 1 2log() log() log()N N N N  (1)

The main advantage of this principle is that mul-
tiplication is done by one summation, but approxi-
mation of logarithm and antilogarithm conversion
introduces error. An iterative approximation of LNS
multiplier can be derived from binary representation
of a number:

 
1

2 1 2 2 1
k

k i j k
i

i j
N Z x






 
    
 
 

 (2)

where k is place of the most signifi cant bit equals
one, so called characteristic number, and Z is a bit

value at the ith position. Because, computers work
with binary number system, it is most appropriate to
use 2 as logarithm basis, so we can derive:

      
1

2 2 2 2log log 2 1 2 log 2 1 log 1
k

k i j k
i

i j
N Z x k x






  
        

    


(3)

Previous equation is a basis for Mitchells LNS
multiplier approximation fi rst time presented in [16].
Second term in (3) is discarded as an approximation
error, but Mitchell also suggested correction term
based on if-else logic. Later, several authors tried to
simplify correction in various ways. Abed and Sifred
[1], [2] derived correction equations with coeffi cients
that are a power of two, reducing the error and keep-
ing the simplicity of the solution. Among the many
methods that use look-up tables for error correction
in the MA algorithm, McLaren’s method [15], which
uses a look-up table with 64 correction coeffi cients
calculated in dependence of the mantissas values,
could be selected as one that has satisfactory accu-
racy and complexity. A recent approach for the MA
error correction, reducing the number of bits with
the value of ’1’ in mantissas by operand decomposi-
tion, was presented by Mahalingam and Ranganta-
than [14]. LNS multipliers can be generally divided
into two categories, one based on methods that use
lookup tables and interpolations, and the other based
on Mitchell’s algorithm (MA) [16], although there is
a lookup-table approach in some of the MA-based
methods [14].

ITERATIVE MULTIPLIER AND SQUARER

In [5], [6] and [8], algorithm of iterative logarith-
mic multiplier is presented and analyzed in detail.
Iterative calculation of correction terms is one way
to deal with LNS multiplier approximation explained
in (3). This kind of approach introduces a simple
pipelined basic block for calculation of fi rst approxi-
mation. Basic block avoids if-else logic, thus signifi -
cantly reducing the hardware resources. The same
basic block can be used for error correction, which
represents a signifi cant advantage for simpler hard-
ware implementation. Due to optimal pipelining,
correction term calculation may begin before the
fi rst approximation is calculated, saving calculation
time. The second advantage of iterative approach is

84 Journal of Information Technology and Applications www.jita-au.com

DIGITAL SIGNAL PROCESSING APPLICATIONS WITH ITERATIVE LOGARITHMIC MULTIPLIERS JITA 1(2011) 2:83-89

the fact that arbitrary number of correction blocks
can be added, without increasing the time of delay.
From (3), we can derive true value of a product:

   
   

1 2

1 2 1 2

1 2 1 2

1 2 1 2

2 1 2 1

2 1 2

k k
true

k k k k

P N N x x

x x x x 

   

   
 (4)

Combining (4) with (1) it can be shown that:

      1 2 1 2 2 1 1 2
1 2 1 22 2 2 2 2 2 2k k k k k k k k

trueP N N N N        (5)

We can see that the last term in (5) demands an-
other multiplication, so by discarding it, we can in-
troduce the fi rst approximation:

   1 2 1 2 2 1
1 22 2 2 2 2k k k k k k

apP N N     (6)

which can be implemented easily. In [6], it was
proven that adding of fi nite number of correction
terms could reduce an approximation error arbitrary.
In Figure 1, the pipelined version of iterative mul-
tiplier is shown, while Figure 2 depicts an iterative
logarithmic multiplier with one correction circuits.

FIGURE 1. FOUR STAGE PIPELINED VERSION OF ITERATIVE LOGARITHMIC
MULTIPLIER’S BASIC BLOCK.

FIGURE 2. AN ITERATIVE LOGARITHMIC MULTIPLIER WITH BASIC BLOCK
AND ONE ERROR CORRECTION CIRCUITS.

In many digital signal applications, for example,
for Euclidean distance calculation, a large number
of squaring is employed. For this purpose, an itera-
tive multiplier can be used, but exploiting the fact
that the operands are same, can lead to even further
hardware simplifi cation. In (7), a simple logarithmic
squarer is described. Similar to the multiplier, an
approximate equation can be derived for iterative
squarer as well. Correct value of a square of N is:

     
   22 1

2 2 2 2

2 2 2 2

k k k k
true

k k k k

S N N

N N

    

    
 (7)

We can see that the last term in (7) demands an-
other square, so by discarding it, we can introduce
the fi rst approximation of a square:

 2 12 2 2k k k
apS N    (8)

Similarly to logarithmic multiplier, in [19] it was
proven that fi nite number of correction circuits could
lead to arbitrary small approximation error. The fi rst
approximation of square, given by (8), requires one
logical shift left (no gates required), one subtraction
and one shift by k (Barrel shifter required).

MOTION VECTOR DETECTION

Motion vector is widely used in video compres-
sion applications and standards, such as MPEG [23],

December 2011 Journal of Information Technology and Applications 85

JITA 1(2011) 2:83-89 AVRAMOVIĆ A., BULIĆ P., BABIĆ Z.:

as well as for moving object location and tracking [7],
[21]. In [6] the use of iterative logarithmic multiplier
for motion vector detection is described. Direct and
most accurate method for motion vector detection
is based on technique of block matching, which re-
quires computation of block correlation. The larger
is the block, the more multiplications must be calcu-
lated for correlation computing. For effi cient com-
pression, a compromise between the speed of the
calculation and the accuracy of the motion vector is
necessary.

We considered matching techniques based on a
block correlation. If we take two successive or near
video frames and mark them as the reference frame
and the observed frame, motion vector technique
tries to match blocks from reference frame and ob-
served frame. It is important to fi nd a matching for
each block from observed frame (observed block).
Motion vector is used as a measure of distance be-
tween same object in reference and observed frame.
Usually, the difference between successive or near-
successive video frames is very small, thus coding
that difference may result in faster and more effi cient
compression. In moving object location and tracking
we try to fi nd motion vectors that belong to many
objects. If we denote the observed block with F(i,j),
where i and j are the pixels’ coordinates, and a re-
spective block in the reference frame with S(i,j), as-
suming the block size is NxN, then the correlation
coeffi cients C(x,y) are calculated for all positions (x,y)
from the reference region as follows:

     
1 1

0 0
, , ,

N N

i j
C x y F i j S x i y j

 

 
    (9)

As we can see from equation (9), for each pixel in
the block, NxN multiplications must be calculated,
which means, that for the block size is NxN, N4 mul-
tiplications must be calculated. In cases where large
frame video stream is processed, this number can be
enormous. Hence, other nonlinear methods for block
matching can be used, which can introduce matching
error [23]. As we can see, calculation of correlation
between to blocks can be very computationally ex-
pensive, but it is important to notice that only the
position of correlation maximum is required for
estimation of motion vector. Often we are satisfi ed
with near maximum position, which leads to near

accurate motion vector estimation, and will not de-
crease algorithm effi ciency signifi cantly. If approxi-
mate multiplication is used instead of full-precision
multiplication, most of the correlation coeffi cients
will be decreased for certain percentage. Maximum
of correlation function usually will not be different
comparing to algorithm with full-precision multipli-
ers. In [6] it was shown that correlation-based block
matching technique with iterative logarithmic multi-
plier and only one error correction circuit introduces
mismatch percentage about 3%, while iterative loga-
rithmic multiplier with two correction circuits has
negligible mismatch percentage. Mismatch is defi ned
as a difference of maxima of correlation function
compared with application with full-precision mul-
tipliers. Therefore, approximate multipliers with less
power and time consumption can be used in this ap-
plication.

SYSTEM IDENTIFICATION

System identifi cation process tries to describe un-
known system with linear and time invariant mod-
el, which has the same behavioral characteristics as
observed unknown system. System identifi cation is
usually done with some kind of adaptive fi lter. Co-
effi cients of model are adapted until the difference
between these two systems output becomes arbitrary
small. One of the most popular methods for adapta-
tion is based on minimization of mean square dif-
ference, and it is called Least Mean Square (LMS)
algorithm. LMS algorithm can require a signifi cant
number of multiplications, especially for high order
system and system with slow convergence. In [4] the
fi xed-point LMS algorithm, based on iterative loga-
rithmic multiplier is described and tested. If we use
h(n) to denote adaptive fi lter coeffi cients vector af-
ter n-th step, we can derive equation for coeffi cients
correction in next step:

     1
2

n n J n
   h h (10)

where μ is adaptation step unit and J(n) is error
cost function for previous step. Error cost function
estimates the difference between responses of the
unknown system and the model. If we use mean
square error for the difference measure, cost func-
tion can be estimated as a mathematical expectation

86 Journal of Information Technology and Applications www.jita-au.com

DIGITAL SIGNAL PROCESSING APPLICATIONS WITH ITERATIVE LOGARITHMIC MULTIPLIERS JITA 1(2011) 2:83-89

of product of adaptive fi lter response and adapta-
tion error, which yields:

         1n n E n e n  h h x (11)

where x(n) denotes adaptive fi lter response and
e(n) denotes error in the n-th step. Estimation of
mathematical expectation E depends on number of
samples and can demand a large number of multipli-
cations, especially if the system order is high. LMS
algorithms adapted for fi xed-point systems have sev-
eral rounding error types, for example, input data
rounding error, coeffi cients rounding error, etc. In
such algorithm realizations, adaptation time can be
decreased with approximate multipliers. An approxi-
mation error can be treated as one of the rounding
errors. In [4] it was shown that approximation error
can be treated as one of rounding errors and that
even the logarithmic multiplier with basic block only,
would not affect adaptation convergence.

CONTEXT-BASED IMAGE RETRIEVAL

It is often necessary to fi nd contextually similar
images with query-image, from large number im-
age datasets. Recently, image datasets can consist of
several thousands to several hundred thousands im-
ages, therefore, searching for visually similar images
is likely impossible. Context-based image retrieval
(CBIR) system describes every image with appro-
priate descriptor that is associated to each image.
Descriptor has various types of information about
image properties, like low level description of color,
shapes and textures, and higher-level structures like
context. Query is done by calculating distance be-
tween query-descriptor and every descriptor from
dataset. Descriptors can be relatively high dimen-
sionality, so calculating Euclidean distance between
every mage descriptor from database can demand a
huge number of squaring.

Logarithmic squaring is a simpler version of loga-
rithmic multiplier; therefore it requires less time and
power. In [19] CBIR system based on logarithmic
squarer is described, and it was proven that system
effi ciency is not compromised. Images were repre-
sented using Gist descriptor, as it was described in
[9] and [17]. Gist descriptor tries to describe image

at local spatial level. For color images, descriptor di-
mensionality can be more that 1500, so calculation
of Euclidean distance between two images may de-
mand more than 1500 squaring. Modern digital im-
age databases contain more than several hundred
thousand images, so it is obvious that squaring rep-
resent time bottleneck for large databases. On the
other hand, a large dimensionality descriptors are
often corrupted with noise, thus approximate squar-
ers probably will not decrease effi ciency of CBIR
system. In [19] mean average precision (MAP), of
CBIR system with full-precision and approximate
logarithmic squarers are compared. Seventy queries
were performed to fi nd near duplicate images on da-
taset contained of 10 000 images. Original images
were not considered as neither correct nor incorrect
retrievals. It was shown that MAP of system with
approximate logarithmic squarer with one error cor-
rection circuit has same value as MAP of system
with full-precision multiplier. Therefore, it was prov-
en that approximate squarer can be used for image
retrieval effi ciently.

NEURAL NETWORK APPLICATION

The hardware implementations of artifi cial neu-
ral network models have found their place in some
niche applications like image processing, pattern rec-
ognition, speech synthesis and analysis, adaptive sen-
sors with teach-in ability and so on.

Neural networks offer a high degree of internal
parallelism, which can be effi ciently used in custom
design chips. Neural network processing comprises
of a huge number of multiplications, i.e. arithmetic
operations consuming a lot of space, time and power.
In [13] we have shown that exact matrix multipliers
can be replaced with approximate iterative logarith-
mic multipliers with one error correction circuit. As
neural networks have highly adaptive nature, which
compensated the erroneous calculation, the replace-
ment of the multipliers does not have any notable
impact on the NN processing and learning accuracy.
Authors in [13] proposed hardware implementation
of the multilayer perceptron with on chip learning
ability, which confi rmed the potential of the pro-
posed approximate multiplier. Authors in [13] per-
formed experiments on Proben1 benchmark dataset,

December 2011 Journal of Information Technology and Applications 87

JITA 1(2011) 2:83-89 AVRAMOVIĆ A., BULIĆ P., BABIĆ Z.:

which showed that the adaptive nature of the pro-
posed neural network model enables the compensa-
tion of the errors caused by inexact calculations. The
iterative logarithmic multipliers require less resource
on a chip, which leads to smaller designs on one
hand and on the other hand to designs with more
concurrent units on the same chip. A consumption
of fewer resources per multiplier also results in more
power effi cient circuits. In [13] we achieved about 20
% of the reduction in power consumption.

CONCLUSION

In this paper, possibilities of usage of approxi-
mate logarithmic multiplications and squaring, as a
special case of multiplying, in various digital signal
applications were described. We proposed loga-

rithmic multipliers which belong to a class of ap-
proximate multipliers based on a trade-off principle.
Trade-off between accuracy and low time and power
consuming is performed in algorithms where low
consumption is more important than accuracy. In
this paper, several such algorithms are described.
Examples of use of iterative logarithmic multipliers
in various applications, such as motion vector detec-
tion, system identifi cation, image retrieval and neural
networks were presented. It was shown that approxi-
mation of multiplication does not affect digital signal
processing application effi ciency, especially when ap-
plication estimations deal with noise-corrupted data.

REFERENCES:

[1] Abed, K.H. and Sifred, R.E. (2003). CMOS VLSI Implementation of a Low-Power Logarithmic Converter, IEEE Transac-
tions on Computers, vol. 52, no. 11, pp. 1421-1433.

[2] Abed, K.H. and Sifred, R.E. (2003). VLSI Implementation of a Low-Power Antilogarithmic Converter, IEEE Transactions
on Computers, vol. 52, no. 9, pp. 1221-1228.

[3] Agostini, L.V., Silva, I.S. and Bampi, S. (2007). Multiplierless and fully pipelined JPEG compression soft IP targeting FP-
GAs, Microprocessors and Microsystems, vol. 31, issue 8, pp. 487–497.

[4] Avramović, A., Risojević, V., Babić, Z. and Bulić, P. (2010). System Identifi cation Using Least Mean Square Algorithm with
Logarithmic Multiplier, In Proceedings of 8th Symposium INDEL, Banja Luka, BIH, pp. 134-137.

[5] Babić, Z., Avramović, A. and Bulić, P. (2008). An Iterative Mitchell’s Algorithm Based Multiplier, In Proceedings of The
IEEE Symposium on Signal Processing and Information Technology, Sarajevo, BIH, pp. 303-308.

[6] Babić, Z., Avramović, A. and Bulić, P. (2011). An Iterative Logarithmic Multiplier, Microprocessors and Microsystems, vol.
35, issue 1, pp. 23-33.

[7] Babić, Z., Ljubojević, M. and Risojević, V. (2011). Indoor RFID Localization Improved by Motion Segmentation, In Proc.
7th International Symposium on Image and Signal Processing and Analysis, pp. 271-276.

[8] Bulić, P., Babić, Z. and Avramović, A. (2010). A Simple Pipelined Logarithmic Multiplier, In Proceedings of 28th Interna-
tional Conference on Computer Design ICCD, Amsterdam, Netherlands, pp. 235-240.

[9] Douze, M., Jegou, H., Sandhawalia, H., Amsaleg, L. and Schmid, C. (2009). Evaluation of gist descriptors for web-scale im-
age search, in International Conference on Image and Video Retrieval, ACM.

[10] Hennessy, J.L. and Patterson, D.A. (2007). Computer Architecture: A Quantitative Approach, fourth ed., Morgan Kauffman
Pub.

[11] Kidambi, S.S., El-Guibaly, F. and Antoniou, A. (1996). Area-effi cient multipliers for digital signal processing applications,
IEEE Transactions Circuits and Systems II: Analog and Digital Signal Processing, vol. 43, no. 2, pp. 90–95.

[12] Kong, M.Y., Langlois, J.M.P. and Al-Khalili, D. (2008). Effi cient FPGA implementation of complex multipliers using the
logarithmic number system, In IEEE International Symposium on Circuits and Systems, ISCAS, pp. 3154–3157.

[13] Lotrič, U. and Bulić, P. (2011). Logarithmic multiplier in hardware implementation of neural networks, in: A. Dobnikar, U.
Lotric, B. Ster (Eds.), ICANNGA (1), volume 6593 of Lecture Notes in Computer Science, Springer, pp. 158–168.

[14] Mahalingam, V. and Rangantathan, N. (2006). Improving Accuracy in Mitchell’s Logarithmic Multiplication Using Operand
Decomposition, IEEE Transactions on Computers, vol. 55, no. 2, pp. 1523-1535.

[15] McLaren, D.J. (2003). Improved Mitchell-based logarithmic multiplier for low-power DSP applications, In Proceedings of
IEEE International SOC Conference, pp. 53-56.

[16] Mitchell, J.N. (1962). Computer multiplication and division using binary logarithms, IRE Transactions on Electronic Com-
puters, pp. 512–517.

88 Journal of Information Technology and Applications www.jita-au.com

DIGITAL SIGNAL PROCESSING APPLICATIONS WITH ITERATIVE LOGARITHMIC MULTIPLIERS JITA 1(2011) 2:83-89

[17] Oliva, A. and Torralba, A. (2001). Modeling the shape of the scene: a holistic representation of the spatial envelope, Inter-
national Journal of Computer Vision, vol. 42, no. 3, pp. 145–175.

[18] Rais, M.H. (2009). Effi cient hardware realization of truncated multipliers using FPGA, International Journal of Applied
Science, vol. 5, no. 2, pp. 124–128.

[19] Risojević, V., Avramović, A., Babić, Z. and Bulić, P. (2011). A Simple Pipelined Squaring Circuit for DSP, In Proceedings of
29th International Conference on Computer Design ICCD, Amherst, MA, USA, pp. 162-167.

[20] Srot, S. and Zemva, A. (2007). Design and implementation of the JPEG algorithm in integrated circuit, Electrotechnical
Review, vol. 74, no. 4, pp. 165–170.

[21] Tekalp, A. M. (1995). Digital Video Processing, Prentice Hall.
[22] Van, L.-D. and Yang, C.-C. (2005). Generalized low-error area-effi cient fi xed-width multipliers, IEEE Transactions Circuits

and Systems I: Regular Paper, vol. 52, no. 8, pp. 1608–1619.
[23] Watkinson, J. (2004). The MPEG Handbook: MPEG-1, MPEG-2, MPEG-4, second ed., Focal Press.

Submitted: December16, 2011
Accepted: December 31, 2011

December 2011 Journal of Information Technology and Applications 89

