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Abstract: Many digital signal processing applications demand a huge number of multiplications, which are time, power and 
area consuming. But input data is often corrupted with noise, which means that a few least signifi cant bits do not carry usable 
information and do not need to be processed. Therefore, approximate multiplication does not affect application effi ciency 
when approximation error is less than noise introduced during data acquisition. This fact enables usage of faster and less 
power-consuming algorithms that is important in many cases where processing includes convolution, integral transformations, 
distance computations etc. This paper discusses logarithm-based approximate multipliers and squarers, their characteristics 
and digital signal processing applications based on approximate multiplications. Our iterative multipliers and squarers contain 
arbitrary series of basic blocks that involves only adders and shifters; therefore, it is not power and time consuming and 
enables achieving arbitrary accuracy. It was shown that proposed approximate multipliers and squarers can be used in several 
signal processing applications without decreasing of application effi ciency.
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INTRODUCTION

Digital signal processing (DSP) applications often 
involve algorithms, which demand a huge number of  
multiplications, which can be time, power and area 
consuming. Multipliers often process a large amount 
of  data corrupted with noise, which is unnecessary 
consumption of  power and time. For example, many 
applications involve calculations of  integral transfor-
mations, such as Fast Fourier Transform (FFT), Dis-
crete Cosine Transform (DFT) and Discrete Wavelet 
Transform (DWT), after which quantization is ap-
plied, like in algorithms for compression [3], [20]. 
Similarly, frequency leakage, which is common dur-
ing spectrum analysis, may lead to the estimation of  
harmonics with certain amount of  error. In such ap-
plications, which involve error due to quantization or 
other quantization, sometimes it is more effi cient to 
calculate multiplication results without least signifi -
cant bits, instead of  calculating full-precision results. 
In other DSP applications convolution or correla-
tion between two signals has to be calculated. Cal-

culation of  correlation may involve a large number 
of  multiplications, but it is important to notice that 
only the maximum or its approximation, of  correla-
tion is used; therefore approximated multiplication 
will not decrease application effi ciency. The similar 
is with noise fi ltering and other applications that in-
clude convolution. Other applications that involve a 
signifi cant number of  multiplications are found in 
cryptography, object matching and recognition, vid-
eo and image processing, etc. In applications where 
the speed of  the calculation is more important than 
accuracy, truncated or logarithm multiplications 
seem to be suitable methods [6], [12], [18].

INTEGER, TRUNCATED AND LOGARITHMIC MULTIPLIERS

Integer multiplier is one of  the simplest meth-
ods for computation of  the product, but it requires 
n multiplication steps for two n-bits unsigned num-
bers [10]. Such an integer multiplication, where the 
least-signifi cant bit of  the multiplicator is examined, 
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is known as the radix-2 multiplication. Shorter time 
delay can be achieved by examining k lower bits of  
the multiplicand in each step. Usually, the radix-4 
multiplication is used, where two least-signifi cant 
bits of  the multiplicand are examined. This kind of  
approach usually requires signifi cant hardware re-
sources. The well-known implementation of  such 
a multiplier is an array multiplier, where n-2 n-bits 
carry-save adders and one n-bits carry-propagate ad-
der is used to implement the n-bits array multiplier. 

Truncated multipliers are extensively used in digi-
tal signal processing where the speed of  the multi-
plication and the area- and power-consumptions are 
important [11], [18], [22]. However, as mentioned 
before, there are many applications in DSP where 
high accuracy is not important. By discarding some 
of  the less signifi cant bits, which can be corrupted 
with noise, multiplier is less hardware and time con-
suming. If  it is necessary, simple compensation cir-
cuits can be applied to reduce the approximation er-
ror [6], [14], [15].

Logarithmic multiplication is an approximate 
multiplication technique that uses the fact that loga-
rithm of  the product is a sum of  operand logarithms 
[6], [12], [14], [15]; therefore an operand conversion 
from integer number system into the logarithm 
number system (LNS) is used. In more detail, the 
multiplication of  the two operands N1 and N2 is per-
formed in three phases, calculating the operand loga-
rithms, the addition of  the operand logarithms and 
the calculation of  the antilogarithm:

1 2 1 2log( ) log( ) log( )N N N N   (1)

The main advantage of  this principle is that mul-
tiplication is done by one summation, but approxi-
mation of  logarithm and antilogarithm conversion 
introduces error. An iterative approximation of  LNS 
multiplier can be derived from binary representation 
of  a number: 
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where k is place of  the most signifi cant bit equals 
one, so called characteristic number, and Z is a bit 

value at the ith position. Because, computers work 
with binary number system, it is most appropriate to 
use 2 as logarithm basis, so we can derive:
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(3)

Previous equation is a basis for Mitchells LNS 
multiplier approximation fi rst time presented in [16]. 
Second term in (3) is discarded as an approximation 
error, but Mitchell also suggested correction term 
based on if-else logic. Later, several authors tried to 
simplify correction in various ways. Abed and Sifred 
[1], [2] derived correction equations with coeffi cients 
that are a power of  two, reducing the error and keep-
ing the simplicity of  the solution. Among the many 
methods that use look-up tables for error correction 
in the MA algorithm, McLaren’s method [15], which 
uses a look-up table with 64 correction coeffi cients 
calculated in dependence of  the mantissas values, 
could be selected as one that has satisfactory accu-
racy and complexity. A recent approach for the MA 
error correction, reducing the number of  bits with 
the value of  ’1’ in mantissas by operand decomposi-
tion, was presented by Mahalingam and Ranganta-
than [14]. LNS multipliers can be generally divided 
into two categories, one based on methods that use 
lookup tables and interpolations, and the other based 
on Mitchell’s algorithm (MA) [16], although there is 
a lookup-table approach in some of  the MA-based 
methods [14].

ITERATIVE MULTIPLIER AND SQUARER

In [5], [6] and [8], algorithm of  iterative logarith-
mic multiplier is presented and analyzed in detail. 
Iterative calculation of  correction terms is one way 
to deal with LNS multiplier approximation explained 
in (3). This kind of  approach introduces a simple 
pipelined basic block for calculation of  fi rst approxi-
mation. Basic block avoids if-else logic, thus signifi -
cantly reducing the hardware resources. The same 
basic block can be used for error correction, which 
represents a signifi cant advantage for simpler hard-
ware implementation. Due to optimal pipelining, 
correction term calculation may begin before the 
fi rst approximation is calculated, saving calculation 
time. The second advantage of  iterative approach is 

84        Journal of Information Technology and Applications        www.jita-au.com



DIGITAL SIGNAL PROCESSING APPLICATIONS WITH ITERATIVE LOGARITHMIC MULTIPLIERS JITA 1(2011) 2:83-89

the fact that arbitrary number of  correction blocks 
can be added, without increasing the time of  delay. 
From (3), we can derive true value of  a product:

   
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Combining (4) with (1) it can be shown that:
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We can see that the last term in (5) demands an-
other multiplication, so by discarding it, we can in-
troduce the fi rst approximation: 
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which can be implemented easily. In [6], it was 
proven that adding of  fi nite number of  correction 
terms could reduce an approximation error arbitrary. 
In Figure 1, the pipelined version of  iterative mul-
tiplier is shown, while Figure 2 depicts an iterative 
logarithmic multiplier with one correction circuits.

FIGURE 1. FOUR STAGE PIPELINED VERSION OF ITERATIVE LOGARITHMIC 
MULTIPLIER’S BASIC BLOCK.

FIGURE 2. AN ITERATIVE LOGARITHMIC MULTIPLIER WITH BASIC BLOCK 
AND ONE ERROR CORRECTION CIRCUITS.

In many digital signal applications, for example, 
for Euclidean distance calculation, a large number 
of  squaring is employed. For this purpose, an itera-
tive multiplier can be used, but exploiting the fact 
that the operands are same, can lead to even further 
hardware simplifi cation. In (7), a simple logarithmic 
squarer is described. Similar to the multiplier, an 
approximate equation can be derived for iterative 
squarer as well. Correct value of  a square of  N is:
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We can see that the last term in (7) demands an-
other square, so by discarding it, we can introduce 
the fi rst approximation of  a square: 

 2 12 2 2k k k
apS N     (8)

Similarly to logarithmic multiplier, in [19] it was 
proven that fi nite number of  correction circuits could 
lead to arbitrary small approximation error. The fi rst 
approximation of  square, given by (8), requires one 
logical shift left (no gates required), one subtraction 
and one shift by k (Barrel shifter required). 

MOTION VECTOR DETECTION

Motion vector is widely used in video compres-
sion applications and standards, such as MPEG [23], 
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as well as for moving object location and tracking [7], 
[21]. In [6] the use of  iterative logarithmic multiplier 
for motion vector detection is described. Direct and 
most accurate method for motion vector detection 
is based on technique of  block matching, which re-
quires computation of  block correlation. The larger 
is the block, the more multiplications must be calcu-
lated for correlation computing. For effi cient com-
pression, a compromise between the speed of  the 
calculation and the accuracy of  the motion vector is 
necessary. 

We considered matching techniques based on a 
block correlation. If  we take two successive or near 
video frames and mark them as the reference frame 
and the observed frame, motion vector technique 
tries to match blocks from reference frame and ob-
served frame. It is important to fi nd a matching for 
each block from observed frame (observed block). 
Motion vector is used as a measure of  distance be-
tween same object in reference and observed frame. 
Usually, the difference between successive or near-
successive video frames is very small, thus coding 
that difference may result in faster and more effi cient 
compression. In moving object location and tracking 
we try to fi nd motion vectors that belong to many 
objects. If  we denote the observed block with F(i,j), 
where i and j are the pixels’ coordinates, and a re-
spective block in the reference frame with S(i,j), as-
suming the block size is NxN, then the correlation 
coeffi cients C(x,y) are calculated for all positions (x,y) 
from the reference region as follows:

     
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As we can see from equation (9), for each pixel in 
the block, NxN multiplications must be calculated, 
which means, that for the block size is NxN, N4 mul-
tiplications must be calculated. In cases where large 
frame video stream is processed, this number can be 
enormous. Hence, other nonlinear methods for block 
matching can be used, which can introduce matching 
error [23]. As we can see, calculation of  correlation 
between to blocks can be very computationally ex-
pensive, but it is important to notice that only the 
position of  correlation maximum is required for 
estimation of  motion vector. Often we are satisfi ed 
with near maximum position, which leads to near 

accurate motion vector estimation, and will not de-
crease algorithm effi ciency signifi cantly. If  approxi-
mate multiplication is used instead of  full-precision 
multiplication, most of  the correlation coeffi cients 
will be decreased for certain percentage. Maximum 
of  correlation function usually will not be different 
comparing to algorithm with full-precision multipli-
ers. In [6] it was shown that correlation-based block 
matching technique with iterative logarithmic multi-
plier and only one error correction circuit introduces 
mismatch percentage about 3%, while iterative loga-
rithmic multiplier with two correction circuits has 
negligible mismatch percentage. Mismatch is defi ned 
as a difference of  maxima of  correlation function 
compared with application with full-precision mul-
tipliers. Therefore, approximate multipliers with less 
power and time consumption can be used in this ap-
plication.

SYSTEM IDENTIFICATION

System identifi cation process tries to describe un-
known system with linear and time invariant mod-
el, which has the same behavioral characteristics as 
observed unknown system. System identifi cation is 
usually done with some kind of  adaptive fi lter. Co-
effi cients of  model are adapted until the difference 
between these two systems output becomes arbitrary 
small. One of  the most popular methods for adapta-
tion is based on minimization of  mean square dif-
ference, and it is called Least Mean Square (LMS) 
algorithm. LMS algorithm can require a signifi cant 
number of  multiplications, especially for high order 
system and system with slow convergence. In [4] the 
fi xed-point LMS algorithm, based on iterative loga-
rithmic multiplier is described and tested. If  we use 
h(n) to denote adaptive fi lter coeffi cients vector af-
ter n-th step, we can derive equation for coeffi cients 
correction in next step:

     1
2

n n J n
   h h  (10)

where μ is adaptation step unit and J(n) is error 
cost function for previous step. Error cost function 
estimates the difference between responses of  the 
unknown system and the model. If  we use mean 
square error for the difference measure, cost func-
tion can be estimated as a mathematical expectation 
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of  product of  adaptive fi lter response and adapta-
tion error, which yields:

         1n n E n e n  h h x  (11)

where x(n) denotes adaptive fi lter response and 
e(n) denotes error in the n-th step. Estimation of  
mathematical expectation E depends on number of  
samples and can demand a large number of  multipli-
cations, especially if  the system order is high. LMS 
algorithms adapted for fi xed-point systems have sev-
eral rounding error types, for example, input data 
rounding error, coeffi cients rounding error, etc. In 
such algorithm realizations, adaptation time can be 
decreased with approximate multipliers. An approxi-
mation error can be treated as one of  the rounding 
errors. In [4] it was shown that approximation error 
can be treated as one of  rounding errors and that 
even the logarithmic multiplier with basic block only, 
would not affect adaptation convergence.

CONTEXT-BASED IMAGE RETRIEVAL

It is often necessary to fi nd contextually similar 
images with query-image, from large number im-
age datasets. Recently, image datasets can consist of  
several thousands to several hundred thousands im-
ages, therefore, searching for visually similar images 
is likely impossible. Context-based image retrieval 
(CBIR) system describes every image with appro-
priate descriptor that is associated to each image. 
Descriptor has various types of  information about 
image properties, like low level description of  color, 
shapes and textures, and higher-level structures like 
context. Query is done by calculating distance be-
tween query-descriptor and every descriptor from 
dataset. Descriptors can be relatively high dimen-
sionality, so calculating Euclidean distance between 
every mage descriptor from database can demand a 
huge number of  squaring. 

Logarithmic squaring is a simpler version of  loga-
rithmic multiplier; therefore it requires less time and 
power. In [19] CBIR system based on logarithmic 
squarer is described, and it was proven that system 
effi ciency is not compromised. Images were repre-
sented using Gist descriptor, as it was described in 
[9] and [17]. Gist descriptor tries to describe image 

at local spatial level. For color images, descriptor di-
mensionality can be more that 1500, so calculation 
of  Euclidean distance between two images may de-
mand more than 1500 squaring. Modern digital im-
age databases contain more than several hundred 
thousand images, so it is obvious that squaring rep-
resent time bottleneck for large databases. On the 
other hand, a large dimensionality descriptors are 
often corrupted with noise, thus approximate squar-
ers probably will not decrease effi ciency of  CBIR 
system. In [19] mean average precision (MAP), of  
CBIR system with full-precision and approximate 
logarithmic squarers are compared. Seventy queries 
were performed to fi nd near duplicate images on da-
taset contained of  10 000 images. Original images 
were not considered as neither correct nor incorrect 
retrievals. It was shown that MAP of  system with 
approximate logarithmic squarer with one error cor-
rection circuit has same value as MAP of  system 
with full-precision multiplier. Therefore, it was prov-
en that approximate squarer can be used for image 
retrieval effi ciently. 

NEURAL NETWORK APPLICATION

The hardware implementations of  artifi cial neu-
ral network models have found their place in some 
niche applications like image processing, pattern rec-
ognition, speech synthesis and analysis, adaptive sen-
sors with teach-in ability and so on.

Neural networks offer a high degree of  internal 
parallelism, which can be effi ciently used in custom 
design chips. Neural network processing comprises 
of  a huge number of  multiplications, i.e. arithmetic 
operations consuming a lot of  space, time and power. 
In [13] we have shown that exact matrix multipliers 
can be replaced with approximate iterative logarith-
mic multipliers with one error correction circuit. As 
neural networks have highly adaptive nature, which 
compensated the erroneous calculation, the replace-
ment of  the multipliers does not have any notable 
impact on the NN processing and learning accuracy. 
Authors in [13] proposed hardware implementation 
of  the multilayer perceptron with on chip learning 
ability, which confi rmed the potential of  the pro-
posed approximate multiplier. Authors in [13] per-
formed experiments on Proben1 benchmark dataset, 
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which showed that the adaptive nature of  the pro-
posed neural network model enables the compensa-
tion of  the errors caused by inexact calculations. The 
iterative logarithmic multipliers require less resource 
on a chip, which leads to smaller designs on one 
hand and on the other hand to designs with more 
concurrent units on the same chip. A consumption 
of  fewer resources per multiplier also results in more 
power effi cient circuits. In [13] we achieved about 20 
% of  the reduction in power consumption.

CONCLUSION

In this paper, possibilities of  usage of  approxi-
mate logarithmic multiplications and squaring, as a 
special case of  multiplying, in various digital signal 
applications were described. We proposed loga-

rithmic multipliers which belong to a class of  ap-
proximate multipliers based on a trade-off  principle. 
Trade-off  between accuracy and low time and power 
consuming is performed in algorithms where low 
consumption is more important than accuracy. In 
this paper, several such algorithms are described. 
Examples of  use of  iterative logarithmic multipliers 
in various applications, such as motion vector detec-
tion, system identifi cation, image retrieval and neural 
networks were presented. It was shown that approxi-
mation of  multiplication does not affect digital signal 
processing application effi ciency, especially when ap-
plication estimations deal with noise-corrupted data.
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