Prva međunarodna naučna konferencija

BEZBJEDNO

URBANO

MOBILNO

Vol. 2 No. 1 (2012): JITA - APEIRON

Siniša Jakovljević

Relational Model and Missing Information

Original scientific paper

DOI: https://doi.org/10.7251/JIT1201032J

Abstract

This paper examines possibilities offered by relational model when using missing information. The overview is conducted and possibilities which occur in practial use were analyzed. The use of predicates in which missing values occur has also been analyzed. Possible effects on system performance have been indicated.

Keywords: relational model, missing information, null, three value logic (3VL), integrity, relational operators.

Vol. 26 No. 2 (2023): JITA - APEIRON

Igor Shubinsky, Alexey Ozerov

Application of Artificial Intelligence Methods for the Prediction of Hazardous Failures

Original scientific paper

Abstract

The availability of real-time data on the state of railway facilities and the state-of-the art technologies for data collection and analysis allow transition to the fourth generation maintenance. It is based on the prediction of the facility functional safety and dependability and the risk-oriented facility management. The article describes an approach to assessing the risks of hazardous facility failures using the latest digital data processing methods. The implementation of this approach will help set maintenance objectives and contribute to the efficient use of resources and the reduction of railway facility managers’ expenditures.

Keywords: predictive analysis, maintenance, functional safety, Big Data, Data Science, risk indicators.

Vol. 26 No. 2 (2023): JITA - APEIRON

Igor Shubinsky, Alexey Ozerov

Application of Artificial Intelligence Methods for the Prediction of Hazardous Failures

Original scientific paper

Abstract

The availability of real-time data on the state of railway facilities and the state-of-the art technologies for data collection and analysis allow transition to the fourth generation maintenance. It is based on the prediction of the facility functional safety and dependability and the risk-oriented facility management. The article describes an approach to assessing the risks of hazardous facility failures using the latest digital data processing methods. The implementation of this approach will help set maintenance objectives and contribute to the efficient use of resources and the reduction of railway facility managers’ expenditures.

Keywords: predictive analysis, maintenance, functional safety, Big Data, Data Science, risk indicators.